Sewage treatment is a type of wastewater treatment which aims to remove contaminants from sewage to produce an effluent that is suitable to discharge to the surrounding environment or an intended reuse application, thereby preventing water pollution from raw sewage discharges. Sewage contains wastewater from households and businesses and possibly pre-treated industrial wastewater. There are a large number of sewage treatment processes to choose from. These can range from decentralized systems (including on-site treatment systems) to large centralized systems involving a network of pipes and pump stations (called sewerage) which convey the sewage to a treatment plant. For cities that have a combined sewer, the sewers will also carry urban runoff (stormwater) to the sewage treatment plant. Sewage treatment often involves two main stages, called primary and secondary treatment, while advanced treatment also incorporates a tertiary treatment stage with polishing processes and nutrient removal. Secondary treatment can reduce organic matter (measured as biological oxygen demand) from sewage, using aerobic or anaerobic biological processes. A so-called quaternary treatment step (sometimes referred to as advanced treatment) can also be added for the removal of organic , such as pharmaceuticals. This has been implemented in full-scale for example in Sweden.
A large number of sewage treatment technologies have been developed, mostly using biological treatment processes. Design engineers and decision makers need to take into account technical and economical criteria of each alternative when choosing a suitable technology. Often, the main criteria for selection are desired effluent quality, expected construction and operating costs, availability of land, energy requirements and sustainability aspects. In developing countries and in rural areas with low population densities, sewage is often treated by various on-site sanitation systems and not conveyed in sewers. These systems include connected to drain fields, on-site sewage systems (OSS), vermifilter systems and many more. On the other hand, advanced and relatively expensive sewage treatment plants may include tertiary treatment with disinfection and possibly even a fourth treatment stage to remove micropollutants.
At the global level, an estimated 52% of sewage is treated. However, sewage treatment rates are highly unequal for different countries around the world. For example, while high-income countries treat approximately 74% of their sewage, developing countries treat an average of just 4.2%.
The treatment of sewage is part of the field of sanitation. Sanitation also includes the management of human waste and solid waste as well as stormwater (drainage) management. The term sewage treatment plant is often used interchangeably with the term wastewater treatment plant.
The terms water recycling center or water reclamation plants are also in use as synonyms.
With regards to biological treatment of sewage, the treatment objectives can include various degrees of the following: to transform or remove organic matter, nutrients (nitrogen and phosphorus), pathogenic organisms, and specific trace organic constituents (micropollutants).
Some types of sewage treatment produce sewage sludge which can be treated before safe disposal or reuse. Under certain circumstances, the treated sewage sludge might be termed biosolids and can be used as a fertilizer.
A large number of sewage treatment technologies have been developed, mostly using biological treatment processes (see list of wastewater treatment technologies). Very broadly, they can be grouped into high tech (high cost) versus low tech (low cost) options, although some technologies might fall into either category. Other grouping classifications are intensive or mechanized systems (more compact, and frequently employing high tech options) versus extensive or natural or nature-based systems (usually using natural treatment processes and occupying larger areas) systems. This classification may be sometimes oversimplified, because a treatment plant may involve a combination of processes, and the interpretation of the concepts of high tech and low tech, intensive and extensive, mechanized and natural processes may vary from place to place.
Examples for systems that can provide full or partial treatment for toilet wastewater only:
The application of sewage to land is both: a type of treatment and a type of final disposal. It leads to groundwater recharge and/or to evapotranspiration. Land application include slow-rate systems, rapid infiltration, subsurface infiltration, overland flow. It is done by flooding, furrows, sprinkler and dripping. It is a treatment/disposal system that requires a large amount of land per person.
In industrialized countries, the most important parameters in process selection are typically efficiency, reliability, and space requirements. In developing countries, they might be different and the focus might be more on construction and operating costs as well as process simplicity.
Choosing the most suitable treatment process is complicated and requires expert inputs, often in the form of feasibility studies. This is because the main important factors to be considered when evaluating and selecting sewage treatment processes are numerous. They include: process applicability, applicable flow, acceptable flow variation, influent characteristics, inhibiting or refractory compounds, climatic aspects, process kinetics and reactor hydraulics, performance, treatment residuals, sludge processing, environmental constraints, requirements for chemical products, energy and other resources; requirements for personnel, operating and maintenance; ancillary processes, reliability, complexity, compatibility, area availability.
With regards to environmental impacts of sewage treatment plants the following aspects are included in the selection process: Odors, Disease vector attraction, sludge transportation, sanitary risks, Air pollution, soil and subsoil contamination, Water pollution or groundwater contamination, devaluation of nearby areas, inconvenience to the nearby population.
For activated sludge treatment plants in the United States, around 30 percent of the annual operating costs is usually required for energy. Most of this electricity is used for aeration, pumping systems and equipment for the dewatering and drying of sewage sludge. Advanced sewage treatment plants, e.g. for nutrient removal, require more energy than plants that only achieve primary or secondary treatment.
Small rural plants using trickling filters may operate with no net energy requirements, the whole process being driven by gravitational flow, including tipping bucket flow distribution and the desludging of settlement tanks to drying beds. This is usually only practical in hilly terrain and in areas where the treatment plant is relatively remote from housing because of the difficulty in managing odors.
For sewage treatment the use of and other on-site sewage facilities (OSSF) is widespread in some rural areas, for example serving up to 20 percent of the homes in the U.S.U.S. Environmental Protection Agency, Washington, D.C. (2008). "Septic Systems Fact Sheet." EPA publication no. 832-F-08-057.
Grit chambers come in three types: horizontal grit chambers, aerated grit chambers, and vortex grit chambers. Vortex grit chambers include mechanically induced vortex, hydraulically induced vortex, and multi-tray vortex separators. Given that traditionally, grit removal systems have been designed to remove clean inorganic particles that are greater than , most of the finer grit passes through the grit removal flows under normal conditions. During periods of high flow deposited grit is resuspended and the quantity of grit reaching the treatment plant increases substantially.
Disadvantages include the basins' capital cost and space requirements. Basins can also provide a place to temporarily hold, dilute and distribute batch discharges of toxic or high-strength wastewater which might otherwise inhibit biological secondary treatment (such was wastewater from or fecal sludge that is brought to the sewage treatment plant in ). Flow equalization basins require variable discharge control, typically include provisions for bypass and cleaning, and may also include aerators and odor control.
Sewage treatment plants that are connected to a combined sewer system sometimes have a bypass arrangement after the primary treatment unit. This means that during very heavy rainfall events, the secondary and tertiary treatment systems can be bypassed to protect them from hydraulic overloading, and the mixture of sewage and storm-water receives primary treatment only.
Primary sedimentation tanks remove about 50–70% of the suspended solids, and 25–40% of the biological oxygen demand (BOD).
Secondary treatment can reduce organic matter (measured as biological oxygen demand) from sewage, using aerobic or anaerobic processes. The organisms involved in these processes are sensitive to the presence of toxic materials, although these are not expected to be present at high concentrations in typical municipal sewage.
Tertiary treatment is sometimes defined as anything more than primary and secondary treatment in order to allow discharge into a highly sensitive or fragile ecosystem such as estuary, low-flow rivers or . Treated water is sometimes disinfected chemically or physically (for example, by lagoons and microfiltration) prior to discharge into a stream, river, bay, lagoon or wetland, or it can be used for the irrigation of a golf course, greenway or park. If it is sufficiently clean, it can also be used for groundwater recharge or agricultural purposes.
Sand filter removes much of the residual suspended matter. Filtration over activated carbon, also called carbon adsorption, removes residual . Micro filtration or synthetic membranes are used in membrane bioreactors and can also remove pathogens.
Settlement and further biological improvement of treated sewage may be achieved through storage in large human-made ponds or lagoons. These lagoons are highly aerobic, and colonization by native , especially reeds, is often encouraged.
Chlorination remains the most common form of treated sewage disinfection in many countries due to its low cost and long-term history of effectiveness. One disadvantage is that chlorination of residual organic material can generate chlorinated-organic compounds that may be or harmful to the environment. Residual chlorine or chloramines may also be capable of chlorinating organic material in the natural aquatic environment. Further, because residual chlorine is toxic to aquatic species, the treated effluent must also be chemically dechlorinated, adding to the complexity and cost of treatment.
Ultraviolet (UV) light can be used instead of chlorine, iodine, or other chemicals. Because no chemicals are used, the treated water has no adverse effect on organisms that later consume it, as may be the case with other methods. UV radiation causes damage to the structure of bacteria, , and other , making them incapable of reproduction. The key disadvantages of UV disinfection are the need for frequent lamp maintenance and replacement and the need for a highly treated effluent to ensure that the target microorganisms are not shielded from the UV radiation (i.e., any solids present in the treated effluent may protect microorganisms from the UV light). In many countries, UV light is becoming the most common means of disinfection because of the concerns about the impacts of chlorine in chlorinating residual organics in the treated sewage and in chlorinating organics in the receiving water.
As with UV treatment, heat sterilization also does not add chemicals to the water being treated. However, unlike UV, heat can penetrate liquids that are not transparent. Heat disinfection can also penetrate solid materials within wastewater, sterilizing their contents. Thermal effluent decontamination systems provide low resource, low maintenance effluent decontamination once installed.
Ozone () is generated by passing oxygen () through a high voltage potential resulting in a third oxygen atom becoming attached and forming . Ozone is very unstable and reactive and oxidizes most organic material it comes in contact with, thereby destroying many pathogenic microorganisms. Ozone is considered to be safer than chlorine because, unlike chlorine which has to be stored on site (highly poisonous in the event of an accidental release), ozone is generated on-site as needed from the oxygen in the ambient air. Ozonation also produces fewer disinfection by-products than chlorination. A disadvantage of ozone disinfection is the high cost of the ozone generation equipment and the requirements for special operators. Ozone sewage treatment requires the use of an ozone generator, which decontaminates the water as ozone bubbles percolate through the tank.
Membranes can also be effective disinfectants, because they act as barriers, avoiding the passage of the microorganisms. As a result, the final effluent may be devoid of pathogenic organisms, depending on the type of membrane used. This principle is applied in membrane bioreactors.
Excessive release to the environment can lead to nutrient pollution, which can manifest itself in eutrophication. This process can lead to , a rapid growth, and later decay, in the population of algae. In addition to causing deoxygenation, some algal species produce toxins that contaminate drinking water supplies.
Ammonia nitrogen, in the form of free ammonia (NH3) is toxic to fish. Ammonia nitrogen, when converted to nitrite and further to nitrate in a water body, in the process of nitrification, is associated with the consumption of dissolved oxygen. Nitrite and nitrate may also have public health significance if concentrations are high in drinking water, because of a disease called metahemoglobinemia.
Phosphorus removal is important as phosphorus is a limiting nutrient for algae growth in many fresh water systems. Therefore, an excess of phosphorus can lead to eutrophication. It is also particularly important for water reuse systems where high phosphorus concentrations may lead to fouling of downstream equipment such as reverse osmosis.
A range of treatment processes are available to remove nitrogen and phosphorus. Biological nutrient removal (BNR) is regarded by some as a type of secondary treatment process, and by others as a tertiary (or advanced) treatment process.
Nitrification itself is a two-step aerobic process, each step facilitated by a different type of bacteria. The oxidation of ammonia (NH4+) to nitrite (NO2−) is most often facilitated by bacteria such as Nitrosomonas spp. ( nitroso refers to the formation of a nitroso functional group). Nitrite oxidation to nitrate (NO3−), though traditionally believed to be facilitated by Nitrobacter spp. (nitro referring the formation of a nitro functional group), is now known to be facilitated in the environment predominantly by Nitrospira spp.
Denitrification requires anoxic conditions to encourage the appropriate biological communities to form. Anoxic conditions refers to a situation where oxygen is absent but nitrate is present. Denitrification is facilitated by a wide diversity of bacteria. The Activated sludge, , waste stabilization ponds, constructed wetlands and other processes can all be used to reduce nitrogen. Since denitrification is the reduction of nitrate to dinitrogen (molecular nitrogen) gas, an electron donor is needed. This can be, depending on the wastewater, organic matter (from the sewage itself), sulfide, or an added donor like methanol. The sludge in the anoxic tanks (denitrification tanks) must be mixed well (mixture of recirculated mixed liquor, return activated sludge, and raw influent) e.g. by using submersible mixers in order to achieve the desired denitrification.
Over time, different treatment configurations for activated sludge processes have evolved to achieve high levels of nitrogen removal. An initial scheme was called the Ludzack–Ettinger Process. It could not achieve a high level of denitrification. The Modified Ludzak–Ettinger Process (MLE) came later and was an improvement on the original concept. It recycles mixed liquor from the discharge end of the aeration tank to the head of the anoxic tank. This provides nitrate for the facultative bacteria.
There are other process configurations, such as variations of the Bardenpho process. They might differ in the placement of anoxic tanks, e.g. before and after the aeration tanks.
Phosphorus can be removed biologically in a process called enhanced biological phosphorus removal. In this process, specific bacteria, called polyphosphate-accumulating organisms (PAOs), are selectively enriched and accumulate large quantities of phosphorus within their cells (up to 20 percent of their mass).
Phosphorus removal can also be achieved by chemical precipitation, usually with salts of iron (e.g. ferric chloride) or aluminum (e.g. alum), or lime. This may lead to a higher sludge production as hydroxides precipitate and the added chemicals can be expensive. Chemical phosphorus removal requires significantly smaller equipment footprint than biological removal, is easier to operate and is often more reliable than biological phosphorus removal. Another method for phosphorus removal is to use granular laterite or zeolite.
Some systems use both biological phosphorus removal and chemical phosphorus removal. The chemical phosphorus removal in those systems may be used as a backup system, for use when the biological phosphorus removal is not removing enough phosphorus, or may be used continuously. In either case, using both biological and chemical phosphorus removal has the advantage of not increasing sludge production as much as chemical phosphorus removal on its own, with the disadvantage of the increased initial cost associated with installing two different systems.
Once removed, phosphorus, in the form of a phosphate-rich sewage sludge, may be sent to landfill or used as fertilizer in admixture with other digested sewage sludges. In the latter case, the treated sewage sludge is also sometimes referred to as biosolids. 22% of the world's phosphorus needs could be satisfied by recycling residential wastewater.
Techniques for elimination of micropollutants via a fourth treatment stage during sewage treatment are implemented in Germany, Switzerland, Sweden and the Netherlands and tests are ongoing in several other countries. In Switzerland it has been enshrined in law since 2016.The publication platform of federal law of Swiss: Verordnung des UVEK zur Überprüfung des Reinigungseffekts von Maßnahmen zur Elimination von organischen Spurenstoffen bei Abwasserreinigungsanlagen, 1. December 2016 (in German) Since 1 January 2025, there has been a recast of the Urban Waste Water Treatment Directive in the European Union. Due to the large number of amendments that have now been made, the directive was rewritten on November 27, 2024 as Directive (EU) 2024/3019, published in the EU Official Journal on December 12, and entered into force on January 1, 2025. The member states now have 31 months, i.e. until July 31, 2027, to adapt their national legislation to the new directive ("implementation of the directive").
The amendment stipulates that, in addition to stricter discharge values for nitrogen and phosphorus, persistent trace substances must at least be partially separated. The target, similar to Switzerland, is that 80% of 6 key substances out of 12 must be removed between discharge into the sewage treatment plant and discharge into the water body. At least 80% of the investments and operating costs for the fourth treatment stage will be passed on to the pharmaceutical and cosmetics industry according to the polluter pays principle in order to relieve the population financially and provide an incentive for the development of more environmentally friendly products. In addition, the municipal wastewater treatment sector is to be energy neutral by 2045 and the emission of microplastics and PFAS is to be monitored.
The implementation of the framework guidelines is staggered until 2045, depending on the size of the sewage treatment plant and its population equivalents (PE). Sewage treatment plants with over 150,000 PE have priority and should be adapted immediately, as a significant proportion of the pollution comes from them. The adjustments are staggered at national level in:
Wastewater treatment plants with 10,000 to 150,000 PE that discharge into coastal waters or sensitive waters are staggered at national level in:
The latter concerns waters with a low dilution ratio, waters from which drinking water is obtained and those that are coastal waters, or those used as bathing waters or used for mussel farming. Member States will be given the option not to apply fourth treatment in these areas if a risk assessment shows that there is no potential risk from micropollutants to human health and/or the environment. EUR-LEX - Directive of the European Parliament and of the Council Concerning Urban Wastewater Treatment (Recast) EUR-LEX - Directive (EU) 2024/3019 of the European Parliament and of the Council of 27 November 2024 concerning urban wastewater treatment (recast) (Text with EEA relevance)
Such process steps mainly consist of activated carbon filters that adsorb the micropollutants. The combination of advanced oxidation with ozone followed by granular activated carbon (GAC) has been suggested as a cost-effective treatment combination for pharmaceutical residues. For a full reduction of microplasts the combination of ultrafiltration followed by GAC has been suggested. Also the use of enzymes such as laccase secreted by fungi is under investigation. Microbial biofuel cells are investigated for their property to treat organic matter in sewage.
To reduce pharmaceuticals in water bodies, source control measures are also under investigation, such as innovations in drug development or more responsible handling of drugs. In the US, the National Take Back Initiative is a voluntary program with the general public, encouraging people to return excess or expired drugs, and avoid flushing them to the sewage system.
In 2024, The Royal Academy of Engineering released a study into the effects wastewater on public health in the United Kingdom. The study gained media attention, with comments from the UKs leading health professionals, including Sir Chris Whitty. Outlining 15 recommendations for various UK bodies to dramatically reduce public health risks by increasing the water quality in its , such as rivers and lakes.
After the release of the report, The Guardian newspaper interviewed Whitty, who stated that improving water quality and sewage treatment should be a high level of importance and a "public health priority". He compared it to eradicating cholera in the 19th century in the country following improvements to the sewage treatment network. The study also identified that low water flows in rivers saw high concentration levels of sewage, as well as times of flooding or heavy rainfall. While heavy rainfall had always been associated with sewage overflows into streams and rivers, the British media went as far to warn parents of the dangers of paddling in shallow rivers during warm weather.
Whitty's comments came after the study revealed that the UK was experiencing a growth in the number of people that were using coastal and inland waters recreationally. This could be connected to a growing interest in activities such as open water swimming or other . Despite this growth in recreation, poor water quality meant some were becoming unwell during events. Most notably, the 2024 Paris Olympics had to delay numerous swimming-focused events like the triathlon due to high levels of sewage in the River Seine.
Today, the situation in urban areas of industrialized countries is usually that sewers route their contents to a sewage treatment plant rather than directly to a body of water. In many developing countries, however, the bulk of municipal and industrial wastewater is discharged to rivers and the ocean without any treatment or after preliminary treatment or primary treatment only. Doing so can lead to water pollution. Few reliable figures exist on the share of the wastewater collected in sewers that is being treated worldwide. A global estimate by UNDP and UN-Habitat in 2010 was that 90% of all wastewater generated is released into the environment untreated. A more recent study in 2021 estimated that globally, about 52% of sewage is treated. However, sewage treatment rates are highly unequal for different countries around the world. For example, while high-income countries treat approximately 74% of their sewage, developing countries treat an average of just 4.2%. As of 2022, without sufficient treatment, more than 80% of all wastewater generated globally is released into the environment. High-income nations treat, on average, 70% of the wastewater they produce, according to UN Water. Only 8% of wastewater produced in low-income nations receives any sort of treatment.
The Joint Monitoring Programme (JMP) for Water Supply and Sanitation by WHO and UNICEF report in 2021 that 82% of people with sewer connections are connected to sewage treatment plants providing at least secondary treatment.WHO and UNICEF (2021) Progress on household drinking water, sanitation and hygiene 2000-2020: Five years into the SDGs. Geneva: World Health Organization (WHO) and the United Nations Children's Fund (UNICEF), 2021. Licence: CC BY-NC-SA 3.0 IGOHowever, this value varies widely between regions. For example, in Europe, North America, Northern Africa and Western Asia, a total of 31 countries had universal (>99%) wastewater treatment. However, in Albania, Bermuda, North Macedonia and Serbia "less than 50% of sewered wastewater received secondary or better treatment" and in Algeria, Lebanon and Libya the value was less than 20% of sewered wastewater that was being treated. The report also found that "globally, 594 million people have sewer connections that don't receive sufficient treatment. Many more are connected to wastewater treatment plants that do not provide effective treatment or comply with effluent requirements.".
Data in 2020 showed that there is still too much uncollected household wastewater: Only 66% of all household wastewater flows were collected at treatment facilities in 2020 (this is determined from data from 128 countries).UN-Water, 2021: Summary Progress Update 2021 – SDG 6 – water and sanitation for all. Version: July 2021. Geneva, Switzerland Based on data from 42 countries in 2015, the report stated that "32 per cent of all wastewater flows generated from point sources received at least some treatment". For sewage that has indeed been collected at centralized sewage treatment plants, about 79% went on to be safely treated in 2020.
In October 2021, United Kingdom Members of Parliament voted to continue allowing untreated sewage from combined sewer overflows to be released into waterways.
|
|